28 research outputs found

    Bisection of Bounded Treewidth Graphs by Convolutions

    Get PDF
    In the Bisection problem, we are given as input an edge-weighted graph G. The task is to find a partition of V(G) into two parts A and B such that ||A| - |B|| <= 1 and the sum of the weights of the edges with one endpoint in A and the other in B is minimized. We show that the complexity of the Bisection problem on trees, and more generally on graphs of bounded treewidth, is intimately linked to the (min, +)-Convolution problem. Here the input consists of two sequences (a[i])^{n-1}_{i = 0} and (b[i])^{n-1}_{i = 0}, the task is to compute the sequence (c[i])^{n-1}_{i = 0}, where c[k] = min_{i=0,...,k}(a[i] + b[k - i]). In particular, we prove that if (min, +)-Convolution can be solved in O(tau(n)) time, then Bisection of graphs of treewidth t can be solved in time O(8^t t^{O(1)} log n * tau(n)), assuming a tree decomposition of width t is provided as input. Plugging in the naive O(n^2) time algorithm for (min, +)-Convolution yields a O(8^t t^{O(1)} n^2 log n) time algorithm for Bisection. This improves over the (dependence on n of the) O(2^t n^3) time algorithm of Jansen et al. [SICOMP 2005] at the cost of a worse dependence on t. "Conversely", we show that if Bisection can be solved in time O(beta(n)) on edge weighted trees, then (min, +)-Convolution can be solved in O(beta(n)) time as well. Thus, obtaining a sub-quadratic algorithm for Bisection on trees is extremely challenging, and could even be impossible. On the other hand, for unweighted graphs of treewidth t, by making use of a recent algorithm for Bounded Difference (min, +)-Convolution of Chan and Lewenstein [STOC 2015], we obtain a sub-quadratic algorithm for Bisection with running time O(8^t t^{O(1)} n^{1.864} log n)

    Simultaneous Feedback Vertex Set: A Parameterized Perspective

    Get PDF
    Given a family of graphs F\mathcal{F}, a graph GG, and a positive integer kk, the F\mathcal{F}-Deletion problem asks whether we can delete at most kk vertices from GG to obtain a graph in F\mathcal{F}. F\mathcal{F}-Deletion generalizes many classical graph problems such as Vertex Cover, Feedback Vertex Set, and Odd Cycle Transversal. A graph G=(V,âˆȘi=1αEi)G = (V, \cup_{i=1}^{\alpha} E_{i}), where the edge set of GG is partitioned into α\alpha color classes, is called an α\alpha-edge-colored graph. A natural extension of the F\mathcal{F}-Deletion problem to edge-colored graphs is the α\alpha-Simultaneous F\mathcal{F}-Deletion problem. In the latter problem, we are given an α\alpha-edge-colored graph GG and the goal is to find a set SS of at most kk vertices such that each graph Gi∖SG_i \setminus S, where Gi=(V,Ei)G_i = (V, E_i) and 1≀i≀α1 \leq i \leq \alpha, is in F\mathcal{F}. In this work, we study α\alpha-Simultaneous F\mathcal{F}-Deletion for F\mathcal{F} being the family of forests. In other words, we focus on the α\alpha-Simultaneous Feedback Vertex Set (α\alpha-SimFVS) problem. Algorithmically, we show that, like its classical counterpart, α\alpha-SimFVS parameterized by kk is fixed-parameter tractable (FPT) and admits a polynomial kernel, for any fixed constant α\alpha. In particular, we give an algorithm running in 2O(αk)nO(1)2^{O(\alpha k)}n^{O(1)} time and a kernel with O(αk3(α+1))O(\alpha k^{3(\alpha + 1)}) vertices. The running time of our algorithm implies that α\alpha-SimFVS is FPT even when α∈o(log⁥n)\alpha \in o(\log n). We complement this positive result by showing that for α∈O(log⁥n)\alpha \in O(\log n), where nn is the number of vertices in the input graph, α\alpha-SimFVS becomes W[1]-hard. Our positive results answer one of the open problems posed by Cai and Ye (MFCS 2014)

    On Finding Short Reconfiguration Sequences Between Independent Sets

    Get PDF

    Galactic Token Sliding

    Get PDF
    International audienc

    Packing Cycles Faster Than Erdos-Posa

    Get PDF

    Combinatorial and Algorithmic Aspects of Monadic Stability

    Get PDF
    Nowhere dense classes of graphs are classes of sparse graphs with rich structural and algorithmic properties, however, they fail to capture even simple classes of dense graphs. Monadically stable classes, originating from model theory, generalize nowhere dense classes and close them under transductions, i.e. transformations defined by colorings and simple first-order interpretations. In this work we aim to extend some combinatorial and algorithmic properties of nowhere dense classes to monadically stable classes of finite graphs. We prove the following results. - For every monadically stable class C and fixed integer s ? 3, the Ramsey numbers R_C(s,t) are bounded from above by ?(t^{s-1-?}) for some ? > 0, improving the bound R(s,t) ? ?(t^{s-1}/(log t)^{s-1}) known for the class of all graphs and the bounds known for k-stable graphs when s ? k. - For every monadically stable class C and every integer r, there exists ? > 0 such that every graph G ? C that contains an r-subdivision of the biclique K_{t,t} as a subgraph also contains K_{t^?,t^?} as a subgraph. This generalizes earlier results for nowhere dense graph classes. - We obtain a stronger regularity lemma for monadically stable classes of graphs. - Finally, we show that we can compute polynomial kernels for the independent set and dominating set problems in powers of nowhere dense classes. Formerly, only fixed-parameter tractable algorithms were known for these problems on powers of nowhere dense classes
    corecore